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Low-temperature phase transition in the three-state Potts glass
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The low-temperature instability of one-step replica symmetry breaking~1RSB! phase in three-state Potts
spin glass is obtained explicitly. The temperature of the instability is higher than the temperature where the
1RSB entropy becomes negative. The conjecture of the possibility of the low-temperature full RSB is sup-
ported.
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During last decades the so called 1RSB~one-step replica-
symmetry breaking! models: thep-state Potts spin glasse
andp-spin spin glasses as well as their soft-spin versions
in the focus of investigations in spin glass theory. It is us
ally believed that the 1RSB solution if stable in the vicini
of its appearance remains stable till zero temperature. In
paper we demonstrate explicitly the low-temperature ins
bility of 1RSB solution for the three-state Potts spin gla
using its representation in terms of quadrupole operators

The p-state Potts spin-glass model is a lattice mo
where each lattice site carries a Potts spins i which can take
one of thep valuess i50,1, . . . ,p21 and the interaction
Hamiltonian is

H52
p

2 (
iÞ j

Ji j ds is j
, ~1!

where dab is the Kronecker symbol. Thus, a pair$s i ,s j%
contributes an energy2Ji j if s i5s j and zero otherwise
The interactionsJi j are quenched random variables describ
by a Gaussian distribution

P~Ji j !5~A2pJ!21exp@2~Ji j 2J0!2/2J2#.

The Potts glass with an infinite-range interactionJ0

5 J̃0 /N, J5 J̃/N1/2 has been studied in Refs.@1–10#. The
short-range version has been considered in Refs.@11–13#
and is a subject of intense investigation through compu
simulations@14#. The soft-spin version of Potts glass has a
been suggested as a starting point for a theory of struct
glasses and the transition from the metastable fluid to
glass state@15#. The Potts glass may also serve as a mo
for orientational glasses in molecular crystals and clus
glasses where a strong single-site anisotropy restricts the
entation of the appropriate molecular group top distinct di-
rections.

The three-state Potts spin glass~PG! is somehow interme-
diate system between Sherrington-Kirkpatrick~SK! glass
(p52) and ‘‘canonical’’ 1RSB glasses (p>4). In three-state
PG there is no reflection symmetry and 1RSB solution w
shown@5,8# to be stable in the vicinity of the RS transitio
temperature~which coincides with that of 1RSB transition!
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against the higher stages of RSB, but the static transitio
continuous, which is not general properties of 1RSB mod

The stability of the 1RSB solution till zero temperatu
was established rigorously by Crisanti and Sommers@16# in
the case of the sphericalp-spin interaction spin-glass mode
The spin-glass phase of the sphericalp-spin model is de-
scribed exactly by a step order parameter function, i.e.,
1RSB is the most general solution within the Parisi RS
scheme.

As far as we know there is only one paper where
phase transition from 1RSB to full RSB~FRSB! phase was
established. Using perturbations around known solutions
the cases ofp521e and p→` glass E. Gardner@17#
showed for Isingp-spin glass that 1RSB solution is unstab
at very low temperature. The second transition leads to
phase described by a continuous order parameter of FR
function q(x).

The RSB solution for the mean field three-state PG w
considered in Refs.@5,7,10#. It was shown@5,7# that 1RSB
solution is stable in the vicinity of phase transition. In Re
@5# it was supposed that at lower temperature another s
glass phase appears which differs from the 1RSB in the
ture of the correlations among the many degenerate gro
states of the system. However, this second phase trans
was not found in the thorough investigation by De San
Parisi, and Ritort@10#. There are no observations whatsoev
that would indicate that the short-range system also has
successive phase transitions@12–14#. It is worth to note that
this possible second transition~often called Gardner transi
tion! to low-temperature FRSB phase was usually regar
as an inessencial, and somehow exotic phenomenon. H
ever, in Ref.@18# it was shown that the metastable stat
which are relevant for the out-of-equilibrium dynamics
such systems are always in a FRSB phase. This renewe
interest to the low-temperature behavior of the systems w
out reflection symmetry.

Let us consider now the system of particles on lattice s
i , j with the Hamiltonian@6,7#

H52
1

2 (
iÞ j

Ji j ~QiQj1ViVj !, ~2!

where Q53Sz
222, V5A3(Sx

22Sy
2), S51, Sz51, 0,21;

Q2522Q, V2521Q,QV5VQ5V. A particle quadrupole
moment is the second-rank tensorial operator with five co
©2003 The American Physical Society03-1
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ponents. In the principal axes frame only two of them
main: Q andV. In the subspaceS51 the following equality
holds:

1

6
~QmQn1VmVn12!5dmn .

This equality shows the equivalence of Eq.~2! to the p53
Potts Hamiltonian~1!. We shall assume thatJi j are distrib-
uted following the Gaussian law with zero mean,

P~Ji j !5~A2pJ!21exp@2Ji j
2 /2J2#,

andJ5 J̃/N1/2.
Using the standard procedure of the replica method,

get the expression for the free energy, corresponding to
Hamiltonian~2! @6#:

^F&J

NkT
52 lim

n→0

1

n
maxH 22t22t2 (

(ab)
~qab!22

t2

2 (
a

~xa!2

1 ln Tr expF t2 (
(ab)

qab~QaQb1VaVb!

1t2(
a

QaxaG J . ~3!

Here (ab) means the sum over the couples of replicasn

is the number of replicas,t5 J̃/kT, xa5 ^̂ Qa&&, qab

5 1
2 ^̂ QaQb1VaVb&& are the order parameters,^̂ •••&& means

thermodynamic average and average over disorder.
The RS solution of saddle-point equations givesx50, q

Þ0 for T,Tc wherekTc52J @2,6#. This solution is unstable
against 1RSB atTc . Following Parisi scheme we carry ou
the first step of RSB by dividing then replicas inton/m
groups ofm replica and settingqab5q1 if a andb belong to
the same group andqab5q0 otherwise. In the limitn→0 the
parameterm is constrained to the range 0<m<1. In the
absence of an external field only two variables remainq
2q05v andm and the free energy takes the form

^F&J

NkT
522t21

t2

2
~m21!v212t2v

2
1

m
lnE

2`

` E
2`

`

dzGdyGCm~u1 ,u2!, ~4!

where

daG5
1

A2p
dae2a2/2,

C5e22u11eu1~eu21e2u2!,

u15tzAv, u25tyA3v,

v,m satisfy the saddle-point equations~in fact, the maximum
conditions! for Eq. ~4!,
06710
-

e
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v5
1

2

^Cm22
„~C18!213~C28!2

…&

^Cm&
, ~5!

2
t2v2m2

2
5 ln^Cm&2m

^Cmln C&

^Cm&
. ~6!

Here

C i85
]C

]u i

and

^•••&5E
2`

` E
2`

`

dzGdyG
•••.

It is worth to note that our free energy~4! coincides with that
given by Eq. ~16! of Ref. @10# if we put therep53, q
5v/2, b52t, introduce new variablesy15z1 ,y25z2
2z1 ,y35z32z1. This enables one to integrate explicit
over y1 so that only two integrals remain. This simpler for
increases the precision of calculations significantly.

The solution of Eqs.~5! and~6! close toTc in the form of
step-functionv(m) was obtained in Refs.@5,7# and was
shown to be stable nearTc against further RSB. Now per
forming numerical maximization of Eq.~4! we obtain the
values ofv andm for all temperatures. The results are pr
sented in Fig. 1 and do coincide with that of the paper R
@10# ~as well as the results for dynamical transition tempe
ture defined from the marginal stability condition!. The cor-
responding free energy~4! changes the sign of the slope
low temperature, so that the entropy of the 1RSB solut
becomes negative~see Fig. 2!. To obtain the point where
further RSB is necessary one has to consider the stabilit
the obtained 1RSB solution forv andm with respect to fur-
ther replica breaking. Following Almeida and Thouless@20#,
we expand the free energy~3! around the 1RSB free energ
~4!. Stability requires that all eigenvalues of the stability m

FIG. 1. Order parameters as functions ofT5kT/J. ~One must
notice thatkTc52J.)
3-2
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trix associated with fluctuations evaluated within 1RSB
lution should be positive. In the limitn→0 we get six eigen-
values@7#:

l15P12~m22!Q1
1

2
~m22!~m23!R, ~7!

l25P812~m21!Q81~m21!2R8, ~8!

l35P1~m24!Q2~m23!R, ~9!

l45P822Q81R8, ~10!

l55P22Q1R, ~11!

l65P81~m22!Q81~12m!R8, ~12!

where

P5422t2@814v24v2#,

Q522t2@4v24v21t3#,

R522t2@24v21r 4#,

P854216t2, Q8528t2v, R8524t2v2,

t352
^C (m23)~C18!3&

^Cm&
19

^C (m23)C18~C28!2&

^Cm&
,

r 45
^C (m24)

„~C18!213~C28!2
…

2&

^Cm&
.

Five of these eigenvalues occur to be always positive.
l5—the replicon mode—changes sign at the tempera
higher than that of the changing of the slope of the 1R
free energy,

l repl~5l5!5422t2@824v1r 422t3#. ~13!

In Fig. 2 the behavior of thel repl along with the entropy
as functions of temperature are presented. The instab
point is t250.4 and in this point the critical values of param
eters arevc51.84 andmc50.15.

FIG. 2. l repl and the entropy as functions of temperatureT
5kT/J).
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At the point t2 it is necessary to perform further replic
symmetry breaking and a transition to a different type
glass phase occurs. Further steps of RSB within Pa
scheme will result in a new transition between the 1R
regime and a more complex regime. These two phases d
in the nature of the correlations among the many degene
ground states of the system. We suppose that this com
regime at lower temperature can in fact be properly
scribed by the FRSB Ansatz by Parisi as it was propose
Ref. @5#. However, we do not exclude the possibility of o
taining the FRSB regime not immediately at the 1RSB ins
bility point but through a sequence of higher order separ
RSB phase transitions.

As some kind of indirect indication that zero temperatu
phase of our model~2! corresponds to FRSB the results
the paper Ref.@8# can be considered. The well-known resu
by Tanaka and Edwards@19# for the number of metastabl
states at zero temperature in SK spin glass is general
there. In Ref.@19# the macroscopically large number^Ns&SK
of the metastable states atT50 was obtained

^Ns&SK5exp@2NVSK#,

where VSK520.199 23. This result was obtained witho
any reference to RSB scheme and even replica appro
Using the method of Ref.@19# in the paper Ref.@8# the num-
ber of metastable states^Ns&3P at T50 for the model~2!
was obtained,

^Ns&3P5exp@2NV3P#,

with V3P5VSK1 ln(3
2), so that the ‘‘relative’’ number of

metastable states~the part of all possiblepN states! is the
same as in SK model,

exp@2NV3P#

3N
5

exp@2NVSK#

2N
. ~14!

It seems that this fact shows a similarity of the structure
zero temperature landscapes in these two models and
ports the importance to look for FRSB phase in three-s
PG.

To conclude, in this paper, using the quadrupole repres
tation Eq.~2! for the three-state PG, we obtained explicit
the point of the instability of 1RSB solution. So, we giv
some additional support to the Gross, Kanter, Sompolin
conjecture about the low-temperature behavior of the thr
state Potts spin glass. We think that our success is base
the fact that we have fewer problems with precision at lo
temperatures, because Eqs.~5! and ~6! are simpler than the
corresponding equations of Ref.@10#.
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